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ABSTRACT

With the advance of scanning devices, 3-d geometric mod-

els have been captured and widely used in animation, video,

interactive virtual environment design nowadays. Their effec-

tive analysis, integration, and retrieval are important research

topics in multimedia. This paper studies a geometric model-

ing problem called 3D region guarding. The 3D region guard-

ing is a well known NP-hard problem; we present an efficient

hierarchical integer linear programming (HILP) optimization

algorithm to solve it on massive data sets. We show the effec-

tiveness of our algorithm and briefly illustrate its applications

in multimedia data processing and computer graphics such as

shape analysis and retrieval, and morphing animation.

Index Terms— 3D Region Guarding, Shape Analysis,

Shape Morphing, Shape Retrieval

1. INTRODUCTION

The rapid advancement of 3D scanning techniques provides

massive geometric data sets nowadays with great ease. When

the size of input data are very large, direct computation can be

expensive; and when the topology and geometry of the input

data are very complicated, the processing of the entire domain

can be infeasible. A common approach for above difficulties

is through a divide-and-conquer strategy that partitions the

problem into solvable sub-domains. 3D geometric data seg-

mentation is a ubiquitous technique. Effective partitioning

complex models can benefit many computer graphics appli-

cations relying on computationally expensive geometric pro-

cessing. Besides the improvement of computation efficiency,

segmenting each model into a set of salient parts facilitates

many shape analysis tasks such as object recognition and re-

trieval, and benefits animation such as inter-object morphing.

This paper studies the shape partitioning based on the visi-

bility, called star decomposition. It segments a 3D volumetric

region to a set of sub-regions, each of which is visible from a
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guarding point (such a subregion is called a star shape). It can

be shown that a star shaped subregion has many advantages.

For example, in solid modeling, lowly distorted harmonic vol-

umetric parameterization can be constructed bijectively up-

on such domain [1]. In computer graphics and animation,

star decomposition benefits (to be demonstrated in Section 4)

tasks such as morphing, shape abstraction and retrieval.

Surface segmentation, generally based on metric measur-

ing local geometric properties of surface patches, has been

thoroughly examined (see great survey papers [2, 3]). Parti-

tioning 3D objects based on their volumetric properties, such

as convexity, symmetry, etc. have also been studied; howev-

er, less study has been conducted to the decomposition based

on visibility. Star-decomposition is closely related to a well

known art-gallery guarding problem. The gallery guarding

problem has been studied in computational geometry com-

munity on 2D planar domains and in 2.5D for terrain guard-

ing. But “Very little is known about gallery guarding in three

dimensions” [4], especially for 3D free-form models, due to

their much higher complexity.

To our best knowledge, no effective practical optimization

algorithm has been proposed for general 3D models. This pa-

per proposes an effective hierarchical optimization algorithm

for the 3D Gallery Guarding problem. The main contributions

of this paper are two-folded.

1. We develop an efficient hierarchical optimization algo-

rithm to compute the guarding for a 3D region bounded

by a polyhedral mesh. From the guarding we can com-

pute star decomposition of this given model.

2. These optimization algorithmic tools that we have devel-

oped can benefit various multimedia application toolkits.

Especially, we explore two applications. (a) Interpolation

through star decomposition can generate better morphing

animation, compared with the conventional linear interpo-

lation approach. (b) Extracted guarding skeletal graph of

the given shape encodes encodes the topological and ge-

ometric characteristics of the shape, and thus can be used

as a signature for shape comparison and retrieval.
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2. BACKGROUND AND RELATED WORK

On a geometric region M , the optimal guarding problem is to

find the smallest number of points {gi} (denoted as guards)

inside M so that every point p ∈ ∂M is visible to at least

one guard. Here M is a 3D object whose boundary surface

∂M is represented by a polygonal mesh. For a given guard

gi, a point p ∈ M is visible to gi if the line segment gip
entirely locates inside M (considering ∂M ⊂ M ). Various

versions of this problem is generally called the art gallery

problem, which is famous and shown to have high complexi-

ty. Even in 2D case, the problem is known to be NP-complete.

To our best knowledge, no effective approximation algorithm

has been proposed for 3D regions bounded by general poly-

gons, and this is the first practical optimization algorithm for

guarding large free-form 3D domain represented by polygo-

nal meshes.

The art gallery problem was first proposed by Victor Klee.

Guards can be restricted to boundary vertices (p ∈ ∂M ), inte-

rior vertices (p ∈ M ), or mobile vertices (either on boundary

or in the interior). When guards are not mobile, they are called

stationary guards. If guards must be on the boundary, they

are called vertex guards; if there is no boundary restriction,

the guards are referred as point guards. In 2D, Chavatal [5]

and Fisk [6] both showed that a simple polygon M ⊂ R
2

needs at most ⌊n/3⌋ stationary guards, based on which, Avis

and Toussaint [7] developed an O(n log n) time algorithm for

positioning ⌊n/3⌋ guards in M . When guards are mobile,

we call them mobile guards. Furthermore, mobile guards are

called edge guards if they are restricted to boundary vertices.

The above theoretic work discuss the upper bounds for

necessary guards on a 2D region. On the other hand, given a

specific region, designing practical algorithm to find the ac-

tual optimal point guards depends on topology and geometry

of this region, and this is usually very difficult. Finding min-

imal guards has been shown to be NP-hard for 2D polygons

with holes [8], 2D simple polygons [9], and even 2D sim-

ple orthogonal polygons [10, 11], using either vertex or point

guards. Approximation algorithms have been studied in 1.5

([4]) and 2D ([12]) to get an close-to-optimal result in poly-

nomial time complexity. Lien [13] computes guarding for 3D

point cloud data, approximating visibility using ǫ-view. The

algorithm is based on a randomized greedy approach.

3. 3D REGION GUARDING

Given a 3-manifold M , whose boundary is discretized by a

triangle mesh ∂M = {V, F}, where V = {v1, v2, . . . , vNV
}

are vertices and F = {f1, f2 . . . , fNF
} are triangle faces con-

necting them.

• A point p ∈ M is visible to another point q ∈ ∂M if the

line segment pq connecting p and q is inside M , namely,

it only intersects ∂M on q: pq
⋂

∂M = {q}.

• The set of all visible vertices {q}, q ∈ ∂M to p is called

p’s visible region S(p) = {v|v ∈ V, v is visible to p}.

• A set of points G = {g1, . . . , gNG
} can visibly guard the

entire region, if the union of their visible regions is the

entire ∂M :
⋃n

i=1 S(gi) = V ; G is called a guarding set.

• Finding a guarding set G with the smallest size n is the

optimal gallery guarding problem that we want to solve.

Our algorithm is based on two intuitions. (1) As demonstrated

in several medical visualization and virtual navigation appli-

cations (e.g. [14]), medial axes (curve skeletons) usually have

desirable visibility to boundary points (referred as the “reli-

ability” of skeletons). An effective skeletons can guide the

camera navigation, ensuring nice examination (visibly cov-

ered) of the interior of organ surfaces. (2) Hierarchical skele-

tons or skeletons for a progressively simplified mesh, can be

effectively computed and used for reducing the size of the op-

timization problem, leading to a computation of better numer-

ical efficiency and stability against boundary perturbations.

The medial axis (skeleton) of a given region M can be

efficiently computed (see the survey [15]) and represented

as a 1D-graph with k sampling nodes. We can then seek an

approximate optimal guarding by using fewest skeletal nodes

to cover the entire ∂M .

In the following, we first introduce the efficient visibility

detection via a sweep algorithm. Then we discuss the greedy

and optimal guarding strategies, and propose our Hierarchical

Guarding algorithm.

3.1. Visibility Detection

A basic operation is to detect the visible region of a given

point p, namely, to check the visibility of p to each vi ∈ V .

Following the definition, intersection between line segmen-

t pvi and ∂M should be checked. vi is invisible from p if

an intersected point q other than vi has a smaller Euclidean

distance |pq| < |pvi|. Enumerating every pvi and check it-

s intersections with every triangle ∀f, f ∈ F , which takes

O(NV · NF ) = O(N2
V ), on each p, is time consuming. A

sweep algorithm can be developed to improve the efficiency

to O(NV logNV ).
First, create a spherical coordinate system originated

at p. Each vertex vi ∈ V is represented as pvi =
(r(vi), θ(vi), ϕ(vi)), where r(vi) ≥ 0,−π < θ(vi) ≤
π,−π

2 ≤ ϕ(vi) ≤ π
2 . For every triangle fi =

(vi,1, vi,2, vi,3) ∈ F, (1 ≤ i ≤ NF ), its max θ(fi) can

be defined as θmax(fi) = max{θ(vi,j)}, 1 ≤ j ≤ 3, the

θmin(fi), ϕmax(fi), ϕmin(fi) can be defined similarly. The

segment pvk cannot intersect with a triangle f unless

{

θmin(f) ≤ θ(vk) ≤ θmax(f)
ϕmin(f) ≤ ϕ(vk) ≤ ϕmax(f),

(1)

and therefore we only check triangles (called active triangles)

satisfying this condition. The angle functions θ and ϕ are not

continuously defined on a sphere. When a triangle f spans

θ = π, we duplicate it to ensure that each θ of the original f



is between (θmin(f) − 2π, θmin(f)] and θ of its duplicate is

between [θmax(f), θmax(f)+2π), by adding or subtracting θ
by 2π. For each triangle f spans ϕ = π, we duplicate it sim-

ilarly. Then we sort all line segments pvi using θ(vi), ϕ(vi),
and sweep all segments in the ascending order of angle func-

tions to check intersections. Given a skeleton point p, for ∂M
with NV vertices it takes O(NV logNV ) to compute and sort

angles of all segments. For each segment, if the size of the ac-

tive triangle list L is m, it takes O(m) intersection-detecting

operations. The total complexity is O(logNV +NV m). The

incident triangles around a vertex vi is generally very small

(i.e. m < logNV ). Therefore the algorithm finishes visibility

detection of p in O(NV logNV ) time. On a skeleton contain-

ing k nodes, it takes O(kNV logNV ) pre-computation time

to compute the visible region for all its nodes.

3.2. Greedy and Optimal Guarding

Once visibility regions for all skeletal nodes are computed,

we want to pick a minimum sized point set that can cover all

boundary vertices. This reduces to a set-covering problem,

also shown to be NP-complete [16]: given the universe V =
{vi}, and a family S of subsets Sj = {sj,k}, sj,k ∈ V , a

cover is a subfamily C ⊂ S of sets whose union is V . We

want to find a covering C that uses the fewest subsets in S.

Here V is the set of all vertices, S contains the visibility to

V from each skeletal node. C indicates a subset of skeletal

nodes that can guard the entire region. Skeletons generated

using medial-axis based methods with dense enough nodes

usually ensure S itself is a covering. This holds in all of our

experiments. If a coarsely sampled skeleton can not cover the

entire V , we can include the vertex into the skeleton point set.

A greedy strategy for the set covering problem is to itera-

tively pick the skeletal nodes that covers the largest number of

unguarded elements in V , then remove covered ones from V
(and update S accordingly since the universe becomes small-

er), until V = ∅. Greedy strategies have been shown effective

and it yields O(log n) approximation [17] to the set covering

problem, where n being the number of optimal solution.

An optimal selection can be computed by 0−1 program-

ming, also called Integer Linear Programming (ILP). For ev-

ery skeleton point pi, i = 1, . . . ,m, we assign a variable xi

such that

xi =

{

1 if pi is chosen;

0 otherwise.

The objective function to minimize is then
∑m

i=1 xi

Since all element should be visible, for ∀vi ∈ V visible

to some skeletal nodes Pi = {p(i,1), . . . , p(i,k)}, at least one

node in Pi should be chosen to ensure vi guarded. Therefore,

we minimize
∑m

i=1 xi, subject to

xi = 0, 1, and
∑

j∈J(i)

xj ≥ 1, ∀m ∈ {1, . . . , n},

where J(i) is the index set of nodes pj visible to vi.

The above optimization can be solved using branch-and-

bound algorithms. When the dimension is small (e.g. a few

hundreds to a few thousands), we can use the TomLab Opti-

mization package [18] to solve it efficiently.

3.3. Hierarchical Guarding

The time complexity in ILP optimization is non-polynomial

and it limits the size of problems that we can handle. General

3D models in multimedia applications can easily have a num-

ber of 20k to 200k vertices on their boundary surfaces, which

prohibitive to ILP optimization. On the other hand, greedy al-

gorithm gets trapped at local minima easily; furthermore, the

greedy strategy is sensitive to local geometric perturbations

(e.g. a small bump could cause big change in the guarding

points selection). We propose a hierarchical guarding compu-

tation framework based on the progressive mesh [19], com-

bining ILP and the adaptive greedy refinement.

We simplify the boundary mesh ∂M into several resolu-

tions ∂M i = {V i, F i}, i = 0, . . . ,m using progressive mesh

[19]. In the coarsest level i = m, ILP optimization is per-

formed on all elements v ∈ ∂Mm and we get the coarsest

level guard set Gi = {gik}. Then we progress to i = m − 1
level ∂Mm−1 = (V m−1, Fm−1): (a) map existing guards

Gi+1 = {gk} to closest finer-level skeletal nodes Gi = {g′k},

locally adjust it to maximize its visible region S(g′k) (b) re-

move least significant guards {g||S(g)| < ǫNV } from Gi; (c)

remove covered vertices {v|v ∈ S(g), g ∈ Gi}.

Fig. 1. HILP Guarding of Models from Shape Retrieval Con-

test (SHREC) Datasets: First row: David, Dog, Michael, and

Victoria; Second row: Gorilla 1, Gorilla 2, Horse, and Cen-

taur. Nodes indicae guards.

Fig. 2. Decomposition based on Visibility of Models from

SHREC: Cat, Hand, and Hand-2. Different subregions are

colorized differently.



Table 1. Statistics for the Guarding of Models from Shape

Retrieval Contest (SHREC) Datasets. NV is the number of ver-

tices on the boundary triangle mesh. NI , NG, NH indicate the num-

ber of guards necessary computed by ILP, Greedy, and HILP ap-

proaches, respectively. t shows the computational time in seconds.

Models NV NI NG NH tI tG tH

Cat 10,004 14 19 15 3173 399.4 413.5

Centaur 10,002 – 34 28 – 315.3 336.5

Wolf 10,005 13 18 15 8044 348.4 354.9

David 14,999 – 36 23 – 280.2 287.4

Dog 15,002 – 39 27 – 433.0 444.2

Victoria 15,000 – 35 27 – 425.7 449.3

Horse 20,002 – 38 29 – 386.5 394.6

Michael 20,002 – 45 36 – 333.0 342.9

Then we solve ILP again on uncovered boundary vertices.

With details increase in finer levels, new guards will be insert-

ed into Gi. The algorithm ends when all boundary vertices are

covered at the finest level i = 0. We call this pipeline the hier-

archical integer linear programing (HILP). Within this hierar-

chical pipeline, a set of reduction rules can be further applied

on each level to reduce the dimensions of the optimization

problem without changing its solution.

In our experiments, we simplify the boundary mesh to the

coarsest level with 5k vertices for the first round ILP opti-

mization. On each iteration, we refine to next level with ad-

ditional 10k vertices. When the size of constraints is around

5k, and the size of variables (skeletal nodes) is around 1k, the

optimization usually takes 10-50 seconds.

HILP has the following advantages over both the pure

greedy strategy and the pure ILP:

(1) It is much faster than the ILP optimization. HILP can

handle massive geometric shapes.

(2) With similar performance, HILP gets better guarding so-

lutions than the greedy strategy.

(3) It is hierarchical and therefore is robust against geomet-

ric noise. In HILP, refined local details tend not to significant-

ly change the guarding graph optimized in coarser levels.

We perform our experiments on the standard benchmark:

Shape Retrieval Contest (SHREC) 2010 Datasets. Figure. 2,1

illustrate HILP guarding and decomposition on part of these

models; Table 1 shows the runtime statistics.

After the guarding graph G = {gi} is computed for a

given 3D region M , we can conduct the region growing al-

gorithm seeded from these guards {gi}, on the dual graph of

the tetrahedral mesh of M . During the region growing we re-

quire the subregion to preserve visibility from each seed gi.
With an iterative scheme, the star decomposition of M can be

efficiently computed.

4. APPLICATIONS

We propose a shape descriptor based on region guarding. The

descriptor has two parts: the guarding graph and histograms

Fig. 3. Guarding Graph Shape Descriptor of the Bunny Mod-

el. Each histogram stores distance from each node to the boundary

surface.

defined on nodes. The guarding graph is extracted from the

skeletal graph, whose nodes are the guarding points. At each

guard gi, we compute a histogram storing the distances from

gi to the object boundary surface, at a set of sampling direc-

tions. Fig. 3 illustrates the signature of the Stanford’s Bunny

model as an example. Note that since the entire region is visi-

ble to G, the surface is completely encoded. As a concise and

complete signature, this shape descriptor can benefit several

applications such as shape analysis and retrieval.

Shape Retrieval. Given a model, we can use this shape

descriptor to search for its most similar shapes in the database.

Shapes are described and compared by their descriptors. Giv-

en two shapes M1 and M2, we match their guarding graphs

G1 and G2 using a weighted energy E(G1, G2) composed of

three terms ([20]): the node fitting error (histogram similari-

ty), smoothness error (similarity of transformations on adja-

cent nodes), and length-preserving error (graph edge length

changes under transformation). Transformation defined on

every node can be solved by minimizing E(G1, G2) globally,

this minimized energy E(G1, G2) characterizes the non-rigid

mapping between G1 and G2. We then use the symmetric en-

ergy (E(G1, G2) + E(G2, G1))/2 as the shape distance be-

tween M1 and M2. Guarding graphs can be pre-computed

(offline) for all shapes in the database; then given a sub-

ject shape we match its guarding graph with graphs in the

database, and return the one with smallest matching energies.

We test this algorithm on a small data set containing seven

models: David, Greek, Male, Female, Horse, Camel and Bun-

ny. The shape comparison results are shown in Table 2, from

where we finds the following pairs are more similar to each

other Male and Female, Horse and Camel, David and Greek.

We also perform shape retrieval on the Shape Retrieval Con-

test (SHREC) 2010 benchmark, please see our accompanying

slides for experimental results.



Fig. 4. Consistent Guarding Multiple Models. Left two: two

horse models and their extracted skeletal nodes; right two:

consistent guarding.

Shape Morphing. Morphing between two surfaces M1

and M2 can be generated through consistent guarding. The

consistent guarding indicates two isomorphic graphs G1 and

G2 (which guard M1 and M2 correspondingly). The consis-

tent guarding {G1, G2} can be computed in two steps: (1)

compute one-to-one surface mapping fM : M1 → M2 us-

ing surface mapping techniques (e.g. [21, 22]); (2) extract-

ing compatible skeletons (e.g. [23]) that maps the first curve

skeleton C1 (of M1) to the second C2 (of M2), fC : C1 →
C2; (3) applying HILP simultaneously. We define vi ∈ M1

and fM (vi) ∈ M2 are simultaneously visible to pj ∈ C1 and

fC(pj) ∈ C2, if both vi is visible to pj and f1(vi) is visi-

ble to f2(pj). Then we can get consistent guarding {G1, G2}
for {M1,M2}, Gi may require more guards than necessary to

cover Mi, but the guarding points and their images consistent-

ly cover both models. This consistent guarding can generate

consistent star decomposition which can benefit many appli-

cations. An example is the morphing animation. Convention-

ally, shape morphing can be generated by linear interpolation:

given inter-surface mapping fM : M1 → M2, the morphing

for each vertex is generated by linear interpolation between

v1 ∈ M1 and its image fM (v1) ∈ M2: v(t) = (1−t)v1+tv2.

With star decomposition, we can interpolate the spherical co-

ordinates to generate the morphing. A similar idea in 2D,

based on star decomposition for 2D polygons, is introduced

in [24]. Now on each star region, the transformation with

respect to the center is decomposed into rotation and scal-

ing (along the radial direction), and interpolated separately.

Compared with direct linear interpolation, this new morphing

scheme can cause less self-intersection, therefore generating

more natural interpolation. A comparative example is shown

in Figure 5.

5. CONCLUSION

We propose a 3D guarding algorithm that can cover a giv-

en complicated region using as few as possible points. To

our best knowledge, the proposed hierarchical integer linear

programming (HILP) algorithm is a first efficient optimiza-

tion algorithm for finding good approximate solutions to this

NP-hard problem. We demonstrate the effectiveness of this

algorithm on two graphics applications: morphing animation

and shape retrieval. In the near future, we will explore more

applications of 3D region guarding. On example is in robotic

environment inspection [25].

Fig. 5. Spatial Linear Interpolation (upper row) VS Spherical In-

terpolation on Star Region (lower row). Each row, from left to

right: original shape, 30%-interpolation, 50%-interpolation, 70%-

interpolation, and target shape. Spatial linear interpolation may

causes unnecessary collapsing-and-expanding; spherical interpola-

tion on star region leads to more visually-natural interpolation.
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